3.883 \(\int \frac{x^6}{(a+b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=298 \[ \frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 x \left (x^2 \left (4 a c+b^2\right )+4 a b\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \left (-\frac{b \left (12 a c+b^2\right )}{\sqrt{b^2-4 a c}}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{b \left (12 a c+b^2\right )}{\sqrt{b^2-4 a c}}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

[Out]

(x^3*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (3*x*(4*a*b + (b^2 + 4*a*c)*x^2))/(8*(b^2 - 4*a*
c)^2*(a + b*x^2 + c*x^4)) + (3*(b^2 + 4*a*c - (b*(b^2 + 12*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*(b^2 + 4*a
*c + (b*(b^2 + 12*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]
*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.682967, antiderivative size = 298, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {1120, 1275, 1166, 205} \[ \frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 x \left (x^2 \left (4 a c+b^2\right )+4 a b\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \left (-\frac{b \left (12 a c+b^2\right )}{\sqrt{b^2-4 a c}}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (\frac{b \left (12 a c+b^2\right )}{\sqrt{b^2-4 a c}}+4 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{\sqrt{b^2-4 a c}+b}} \]

Antiderivative was successfully verified.

[In]

Int[x^6/(a + b*x^2 + c*x^4)^3,x]

[Out]

(x^3*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (3*x*(4*a*b + (b^2 + 4*a*c)*x^2))/(8*(b^2 - 4*a*
c)^2*(a + b*x^2 + c*x^4)) + (3*(b^2 + 4*a*c - (b*(b^2 + 12*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)
/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*(b^2 + 4*a
*c + (b*(b^2 + 12*a*c))/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(8*Sqrt[2]
*Sqrt[c]*(b^2 - 4*a*c)^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1120

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> -Simp[(d^3*(d*x)^(m - 3)*(2*a +
 b*x^2)*(a + b*x^2 + c*x^4)^(p + 1))/(2*(p + 1)*(b^2 - 4*a*c)), x] + Dist[d^4/(2*(p + 1)*(b^2 - 4*a*c)), Int[(
d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1275

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*
(f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1)*(b*d - 2*a*e - (b*e - 2*c*d)*x^2))/(2*(p + 1)*(b^2 - 4*a*c)), x] - D
ist[f^2/(2*(p + 1)*(b^2 - 4*a*c)), Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1)*Simp[(m - 1)*(b*d - 2*a*e) -
(4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[
p, -1] && GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
 q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^6}{\left (a+b x^2+c x^4\right )^3} \, dx &=\frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{\int \frac{x^2 \left (6 a-3 b x^2\right )}{\left (a+b x^2+c x^4\right )^2} \, dx}{4 \left (b^2-4 a c\right )}\\ &=\frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 x \left (4 a b+\left (b^2+4 a c\right ) x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac{\int \frac{12 a b-3 \left (b^2+4 a c\right ) x^2}{a+b x^2+c x^4} \, dx}{8 \left (b^2-4 a c\right )^2}\\ &=\frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 x \left (4 a b+\left (b^2+4 a c\right ) x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{\left (3 \left (b^2+4 a c-\frac{b \left (b^2+12 a c\right )}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{16 \left (b^2-4 a c\right )^2}+\frac{\left (3 \left (b^2+4 a c+\frac{b \left (b^2+12 a c\right )}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx}{16 \left (b^2-4 a c\right )^2}\\ &=\frac{x^3 \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 x \left (4 a b+\left (b^2+4 a c\right ) x^2\right )}{8 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 \left (b^2+4 a c-\frac{b \left (b^2+12 a c\right )}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \left (b^2+4 a c+\frac{b \left (b^2+12 a c\right )}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{8 \sqrt{2} \sqrt{c} \left (b^2-4 a c\right )^2 \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.874455, size = 343, normalized size = 1.15 \[ \frac{\frac{8 a b c x+24 a c^2 x^3+6 b^2 c x^3+4 b^3 x}{\left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac{4 \left (a x \left (b-2 c x^2\right )+b^2 x^3\right )}{\left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{3 \sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+4 a c \sqrt{b^2-4 a c}-12 a b c-b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b^2 \sqrt{b^2-4 a c}+4 a c \sqrt{b^2-4 a c}+12 a b c+b^3\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\left (b^2-4 a c\right )^{5/2} \sqrt{\sqrt{b^2-4 a c}+b}}}{16 c} \]

Antiderivative was successfully verified.

[In]

Integrate[x^6/(a + b*x^2 + c*x^4)^3,x]

[Out]

((4*b^3*x + 8*a*b*c*x + 6*b^2*c*x^3 + 24*a*c^2*x^3)/((b^2 - 4*a*c)^2*(a + b*x^2 + c*x^4)) - (4*(b^2*x^3 + a*x*
(b - 2*c*x^2)))/((b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) + (3*Sqrt[2]*Sqrt[c]*(-b^3 - 12*a*b*c + b^2*Sqrt[b^2 - 4
*a*c] + 4*a*c*Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)
*Sqrt[b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(b^3 + 12*a*b*c + b^2*Sqrt[b^2 - 4*a*c] + 4*a*c*Sqrt[b^2 -
4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/((b^2 - 4*a*c)^(5/2)*Sqrt[b + Sqrt[b^2 - 4*a*
c]]))/(16*c)

________________________________________________________________________________________

Maple [B]  time = 0.204, size = 753, normalized size = 2.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6/(c*x^4+b*x^2+a)^3,x)

[Out]

(3/8*c*(4*a*c+b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^7+1/8*b*(16*a*c+5*b^2)/(16*a^2*c^2-8*a*b^2*c+b^4)*x^5-1/8*(4*a
*c-19*b^2)*a/(16*a^2*c^2-8*a*b^2*c+b^4)*x^3+3/2*a^2*b/(16*a^2*c^2-8*a*b^2*c+b^4)*x)/(c*x^4+b*x^2+a)^2-3/4/(16*
a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2)
)*c)^(1/2))*a-3/16/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((
-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2+9/4/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+
b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b+3/16/(16*a^2*c^2-8*a*b^2*c+b^4
)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(x*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)
^(1/2))*b^3+3/4/(16*a^2*c^2-8*a*b^2*c+b^4)*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(
-4*a*c+b^2)^(1/2))*c)^(1/2))*a+3/16/(16*a^2*c^2-8*a*b^2*c+b^4)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan
(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2+9/4/(16*a^2*c^2-8*a*b^2*c+b^4)*c/(-4*a*c+b^2)^(1/2)*2^(1/2)
/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*a*b+3/16/(16*a^2*c^2-8*
a*b^2*c+b^4)/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(x*c*2^(1/2)/((b+(-4*a*c+b^2)^(
1/2))*c)^(1/2))*b^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")

[Out]

1/8*(3*(b^2*c + 4*a*c^2)*x^7 + (5*b^3 + 16*a*b*c)*x^5 + 12*a^2*b*x + (19*a*b^2 - 4*a^2*c)*x^3)/((b^4*c^2 - 8*a
*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2*c + 16*a^4*c^2 +
 (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2) + 3/8*integrate(((b^2 + 4*a*
c)*x^2 - 4*a*b)/(c*x^4 + b*x^2 + a), x)/(b^4 - 8*a*b^2*c + 16*a^2*c^2)

________________________________________________________________________________________

Fricas [B]  time = 2.03805, size = 6966, normalized size = 23.38 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")

[Out]

1/16*(6*(b^2*c + 4*a*c^2)*x^7 + 2*(5*b^3 + 16*a*b*c)*x^5 + 24*a^2*b*x + 2*(19*a*b^2 - 4*a^2*c)*x^3 + 3*sqrt(1/
2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^
2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(b^5
 + 40*a*b^3*c + 80*a^2*b*c^2 + (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 -
 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*
c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))*log(3*(5*
b^4 + 40*a*b^2*c + 16*a^2*c^2)*x + 3*sqrt(1/2)*(2*b^7 - 24*a*b^5*c + 96*a^2*b^3*c^2 - 128*a^3*b*c^3 + (3*b^12*
c - 56*a*b^10*c^2 + 400*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 1280*a^4*b^4*c^5 + 2048*a^5*b^2*c^6 - 4096*a^6*c^7)/s
qrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*c^7))*sqrt(-(b^5
 + 40*a*b^3*c + 80*a^2*b*c^2 + (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 -
 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*
c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))) - 3*sqrt
(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3
*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt(-(
b^5 + 40*a*b^3*c + 80*a^2*b*c^2 + (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^
5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a
^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))*log(3*
(5*b^4 + 40*a*b^2*c + 16*a^2*c^2)*x - 3*sqrt(1/2)*(2*b^7 - 24*a*b^5*c + 96*a^2*b^3*c^2 - 128*a^3*b*c^3 + (3*b^
12*c - 56*a*b^10*c^2 + 400*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 1280*a^4*b^4*c^5 + 2048*a^5*b^2*c^6 - 4096*a^6*c^7
)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*c^7))*sqrt(-(
b^5 + 40*a*b^3*c + 80*a^2*b*c^2 + (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^
5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a
^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))) + 3*s
qrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*
a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*sqrt
(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2
*c^5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 102
4*a^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))*log
(3*(5*b^4 + 40*a*b^2*c + 16*a^2*c^2)*x + 3*sqrt(1/2)*(2*b^7 - 24*a*b^5*c + 96*a^2*b^3*c^2 - 128*a^3*b*c^3 - (3
*b^12*c - 56*a*b^10*c^2 + 400*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 1280*a^4*b^4*c^5 + 2048*a^5*b^2*c^6 - 4096*a^6*
c^7)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*c^7))*sqrt
(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2
*c^5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 102
4*a^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))) -
3*sqrt(1/2)*((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 -
 8*a^3*b^2*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)*s
qrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*
b^2*c^5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 -
1024*a^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6))*
log(3*(5*b^4 + 40*a*b^2*c + 16*a^2*c^2)*x - 3*sqrt(1/2)*(2*b^7 - 24*a*b^5*c + 96*a^2*b^3*c^2 - 128*a^3*b*c^3 -
 (3*b^12*c - 56*a*b^10*c^2 + 400*a^2*b^8*c^3 - 1280*a^3*b^6*c^4 + 1280*a^4*b^4*c^5 + 2048*a^5*b^2*c^6 - 4096*a
^6*c^7)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 - 1024*a^5*c^7))*s
qrt(-(b^5 + 40*a*b^3*c + 80*a^2*b*c^2 - (b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*
b^2*c^5 - 1024*a^5*c^6)/sqrt(b^10*c^2 - 20*a*b^8*c^3 + 160*a^2*b^6*c^4 - 640*a^3*b^4*c^5 + 1280*a^4*b^2*c^6 -
1024*a^5*c^7))/(b^10*c - 20*a*b^8*c^2 + 160*a^2*b^6*c^3 - 640*a^3*b^4*c^4 + 1280*a^4*b^2*c^5 - 1024*a^5*c^6)))
)/((b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^8 + 2*(b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^6 + a^2*b^4 - 8*a^3*b^2
*c + 16*a^4*c^2 + (b^6 - 6*a*b^4*c + 32*a^3*c^3)*x^4 + 2*(a*b^5 - 8*a^2*b^3*c + 16*a^3*b*c^2)*x^2)

________________________________________________________________________________________

Sympy [B]  time = 14.0397, size = 627, normalized size = 2.1 \begin{align*} \frac{12 a^{2} b x + x^{7} \left (12 a c^{2} + 3 b^{2} c\right ) + x^{5} \left (16 a b c + 5 b^{3}\right ) + x^{3} \left (- 4 a^{2} c + 19 a b^{2}\right )}{128 a^{4} c^{2} - 64 a^{3} b^{2} c + 8 a^{2} b^{4} + x^{8} \left (128 a^{2} c^{4} - 64 a b^{2} c^{3} + 8 b^{4} c^{2}\right ) + x^{6} \left (256 a^{2} b c^{3} - 128 a b^{3} c^{2} + 16 b^{5} c\right ) + x^{4} \left (256 a^{3} c^{3} - 48 a b^{4} c + 8 b^{6}\right ) + x^{2} \left (256 a^{3} b c^{2} - 128 a^{2} b^{3} c + 16 a b^{5}\right )} + \operatorname{RootSum}{\left (t^{4} \left (68719476736 a^{10} c^{11} - 171798691840 a^{9} b^{2} c^{10} + 193273528320 a^{8} b^{4} c^{9} - 128849018880 a^{7} b^{6} c^{8} + 56371445760 a^{6} b^{8} c^{7} - 16911433728 a^{5} b^{10} c^{6} + 3523215360 a^{4} b^{12} c^{5} - 503316480 a^{3} b^{14} c^{4} + 47185920 a^{2} b^{16} c^{3} - 2621440 a b^{18} c^{2} + 65536 b^{20} c\right ) + t^{2} \left (- 188743680 a^{7} b c^{7} + 141557760 a^{6} b^{3} c^{6} - 2359296 a^{5} b^{5} c^{5} - 26542080 a^{4} b^{7} c^{4} + 9584640 a^{3} b^{9} c^{3} - 1290240 a^{2} b^{11} c^{2} + 46080 a b^{13} c + 2304 b^{15}\right ) + 20736 a^{5} c^{4} + 103680 a^{4} b^{2} c^{3} + 142560 a^{3} b^{4} c^{2} + 32400 a^{2} b^{6} c + 2025 a b^{8}, \left ( t \mapsto t \log{\left (x + \frac{33554432 t^{3} a^{6} c^{7} - 16777216 t^{3} a^{5} b^{2} c^{6} - 10485760 t^{3} a^{4} b^{4} c^{5} + 10485760 t^{3} a^{3} b^{6} c^{4} - 3276800 t^{3} a^{2} b^{8} c^{3} + 458752 t^{3} a b^{10} c^{2} - 24576 t^{3} b^{12} c - 64512 t a^{3} b c^{3} - 43776 t a^{2} b^{3} c^{2} - 21312 t a b^{5} c - 144 t b^{7}}{432 a^{2} c^{2} + 1080 a b^{2} c + 135 b^{4}} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**6/(c*x**4+b*x**2+a)**3,x)

[Out]

(12*a**2*b*x + x**7*(12*a*c**2 + 3*b**2*c) + x**5*(16*a*b*c + 5*b**3) + x**3*(-4*a**2*c + 19*a*b**2))/(128*a**
4*c**2 - 64*a**3*b**2*c + 8*a**2*b**4 + x**8*(128*a**2*c**4 - 64*a*b**2*c**3 + 8*b**4*c**2) + x**6*(256*a**2*b
*c**3 - 128*a*b**3*c**2 + 16*b**5*c) + x**4*(256*a**3*c**3 - 48*a*b**4*c + 8*b**6) + x**2*(256*a**3*b*c**2 - 1
28*a**2*b**3*c + 16*a*b**5)) + RootSum(_t**4*(68719476736*a**10*c**11 - 171798691840*a**9*b**2*c**10 + 1932735
28320*a**8*b**4*c**9 - 128849018880*a**7*b**6*c**8 + 56371445760*a**6*b**8*c**7 - 16911433728*a**5*b**10*c**6
+ 3523215360*a**4*b**12*c**5 - 503316480*a**3*b**14*c**4 + 47185920*a**2*b**16*c**3 - 2621440*a*b**18*c**2 + 6
5536*b**20*c) + _t**2*(-188743680*a**7*b*c**7 + 141557760*a**6*b**3*c**6 - 2359296*a**5*b**5*c**5 - 26542080*a
**4*b**7*c**4 + 9584640*a**3*b**9*c**3 - 1290240*a**2*b**11*c**2 + 46080*a*b**13*c + 2304*b**15) + 20736*a**5*
c**4 + 103680*a**4*b**2*c**3 + 142560*a**3*b**4*c**2 + 32400*a**2*b**6*c + 2025*a*b**8, Lambda(_t, _t*log(x +
(33554432*_t**3*a**6*c**7 - 16777216*_t**3*a**5*b**2*c**6 - 10485760*_t**3*a**4*b**4*c**5 + 10485760*_t**3*a**
3*b**6*c**4 - 3276800*_t**3*a**2*b**8*c**3 + 458752*_t**3*a*b**10*c**2 - 24576*_t**3*b**12*c - 64512*_t*a**3*b
*c**3 - 43776*_t*a**2*b**3*c**2 - 21312*_t*a*b**5*c - 144*_t*b**7)/(432*a**2*c**2 + 1080*a*b**2*c + 135*b**4))
))

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^6/(c*x^4+b*x^2+a)^3,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError